A Presentation for the National HBPA Summer 2014

On Medication Thresholds By Wayne Carlton Duer, PhD A MEDICATION THRESHOLD IS A

MEDICATION CONCENTRATION IN

WEIGHT PER VOLUME. IF THE SAMPLE

FROM A HORSE EXCEEDS THIS

CONCENTRTAION THEN IT IS ASSERTED

THAT THE MEDICATION RULE WAS

VIOLATED AND A FINE MAY BE ISSUED.

IDEALLY A MEDICATION THRESHOLD

SHOULD BE SET IN SUCH A WAY AS TO

MINIMIZE THE CHANCES OF FALSELY ACCUSING

SOMEONE OF A VIOLATION. A REVIEW OF AVAILABLE

LITERATURE SUGGESTS THAT THIS IS NOT NECESSARILY

ALWAYS THE PRACTICE.

IDEALLY THE THRESHOLD WOULD BE

LIKE A SPEEDOMETER THAT ONE COULD

CLEARLY SEE. HOWEVER, LIFE IS NOT

SO SIMPLE. COMPLEXITIES EXIST NOT

ONLY IN THE SETTING OF A THRESHOLD

BUT ALSO IN ITS IMPLEMENTATION.

What the literature and practice look like today.

"Well, lemme think. ... You've stumped me, son. Most folks only wanna know how to go the other way."

CHAIN OF CUSTODY **DISTRIBUTIONS EXIST BECAUSE OF**

VARIABLILITY.

NOT ALL HORSES ARE THE SAME IN

THE WAY IN WHICH THEY CHANGE

AND DISTRIBUTE SUBSTANCES IN THEIR

BLOOD OR ELIMINATE SUBSTANCES IN THEIR

URINE.

ALL CHEMICAL TESTS ALSO HAVE INHERENT

VARIABILITY .

A DISTRIBUTION CAN LOOK LIKE

A MOUNTAIN RANGE.

A DISTRIBUTION CAN LOOK

LIKE A BAR CHART.

DISTRIBUTIONS ARE THE HEART

OF MATHEMATICAL STATISTICS AS

APPLIED TO REAL WORLD PROBLEMS

LIKE DETERMING A THRESHOLD.

IN CHEMICAL TESTS THESE DISTRIBUTIONS

ARE GRAPHS THAT CAN LOOK LIKE MOUNTAN

RANGES OR BAR CHARTS. THE BOTTOM OR

HORIZONTAL AXIS OF THESE GRAPHS IS A

MEASURED VALUE SUCH AS CONCENTRATION

OR OTHER MEASURED PROPERTY.

THE VERTICAL AXIS IS THE NUMBER OF

SPECIMENS HAVING THIS CONCENTRATION

OR PROPERTY.

AVERAGE OR MEAN IS 163

MALE WEIGHTS

Example Data for Analytical Methods

Thin Layer Chromatography 3

SCIENTISTS WISH FOR A NORMAL

OR GAUSSIAN DISTRIBUTION. THIS IS BECAUSE THE NORMAL

DISTRIBUTION HAS SOME VERY CONVENIENT PROPRTIES.

IF THEIR DATA DOES NOT CONFORM TO

A NORMAL DISTRIBUTION OFTEN THEY WILL USE

ANY MATHEMATICAL FUNCTION OR OPERATOR

TO TRY TO GET IT TO LOOK SOMETHING

LIKE NORMAL. THIS MAY NOT WORK OUT WELL.

Some mathematical functions have been used

TO ATTEMPT TO TRANSFORM DATA TO A NORMAL LOOKING

DISTRIBUTION. A FEW OF THESE FUNCTIONS ARE:

LOGARITHM, EXPONENTIAL, SQUARE ROOT, CUBE ROOT, GEOMETRIC, BURR, JOHNSON, LOG-LOGISTIC.

AFTER USING THE TRANSFORMATION, INVOLVED MATHEMATICAL TESTS SUCH AS

KOLMOGOROV-SMIRNOV CAN BE APPLIED TO SEE IF NORMAL APPROXIMATION

HAS BEEN ACHIEVED . BACK TRANSFORMATIONS MUST THEN BE APPLIED

WHICH ARE NOT UNAMBIGUOUS. THEY CONSTITUTE NO ABSOLUTE PROOF.

BEFORE USING ANY DATA, INDUSTRIAL QUALITY CONTROL STATISTICIANS WILL TEST ASSUMPTIONS. FIVE OF THESE ARE:

- 1. SUFFICIENT NUMBER OF DATA POINTS
- 2. UNCORRELATED MEASUREMENTS
- 3. NORMALITY
- 4. Homogeneity of Variances
- 5. Homogeneity of Means

IF ANY ASSUMPTION IS FALSE USE OF THE DATA MUST BE RESTRICTED.

FLUNIXIN

THE PREVIOUS HISTOGRAM REPRESENTS PLASMA RESULTS AT 24 HOURS AFTER ADMISITRATION OF 500 MG. FROM SUCH DATA, THE RACING **MEDICATION AND TESTING CONSORTIUM, INC. RECOMMENDED A** THRESHOLD OF 20 NG/ML, WHICH IS THE PRESENT THRESHOLD OF THE CALIFORNIA HORSE RACING BOARD. IN A 2006 PRESENTATION **DR. SCOTT STANLEY DISCUSSED CALIFORNIA'S PREVIOUS EXPERIENCE** WITH THIS LEVEL. BASICALLY, MANY POSITIVES WERE FOUND. **DR. STANLEY HAD THOUGHT THAT A THRESHOLD OF ABOUT 50 WAS** NEEDED FOR THE 500MG, 24HR PRACTICE.

https://ua-rtip.org/symposium racing gaming

FROM A PRESENTATION BY H. KNYCH, R. SAMS, R. ARTHUR,

and S. STANLEY, http://ua-rtip.org/sites/ua-rtip.org/files/stanley.pdf, THEIR METHOD OF DERIVING THRESHOLDS INVOLVES TRANSFORMING THE DATA WITH THE NAPERIAN LOGRITHM, PERFORMING CALCULATIONS AND THEN BACKTRANSFORMING FOR A THRESHOLD. USING 12 HORSES THEY FOUND A THRESHOLD OF 47.7, USING 31 HORSES GAVE A 40.9. THE METHOD WHICH THEY USED MAY BE CALLED **DISTRIBUTION DEPENDENT. ONLY ABOUT 20 HORSES WERE** SUGGESTED TO BE USED. THIS IS TOO SMALL OF A NUMBER.

Type I Calculation (UCD)

	N = 12	N = 31
Mean	2.5849	2.3307
SD	0.6663	0.6324
Mean + k x SD	4.869	4.089
Concentration, ng/mL	47.4	40.9

A 1.1 MG/KG IV DOSE OF FLUNIXIN AS FLUNIXIN MEGLUMINE BRAND OF BANAMINETM WAS ADMINISTERED TO 16 HORSES AND BLOOD SAMPLES WERE COLLECTED AT VARIOUS TIMES AFTER ADMINISTRATION. PLASMA FLUNIXIN CONCENTRATIONS WERE DETERMINED BY A VALIDATED LIQUID CHROMATOGRAPHY MASS SPECTROMETRIC METHOD. THE PLASMA FLUNIXIN CONCENTRATIONS WERE ABOVE 20 NG/ML AT 24 HOURS IN SAMPLES FROM 4 OF 16 HORSES. WWW.rmtcnet.com

THERE HAVE BEEN MANY ARTICLES

PUBLISHED CONCERNING THE USE OF

DISTRIBUTION DEPENDANT METHODS

FOR THRESHOLD CALCULATIONS. A

NUMBER OF PROBLEMS HAVE

BEEN FOUND TO EXIST IN THEM.

THREE INDICATE AT LEAST 120 SUBJECTS

OR HORSES ARE NEEDED TO HAVE A

CHANCE OF DEFINING A DISTRIBUTION.

ALTERNATIVELY, DISTRIBUTION-FREE

METHODS HAVE BEEN PROPOSED AND

USED. THESE INVOLVE FEWER

ASSUMPTIONS AND THEREFORE

OFFER ADVANTAGES.

ONE OF THESE STEMS FROM THE

STATISTICIAN DR. HARALD CRAMÉR.

USING THE DATA FROM THE HISTOGRAM FOR

FLUNIXIN WITH EQUATIONS OF CRAMÉR

AND CHOOSING A PROBABILITY OF 1/10000

FOR MAKING A FALSE ACCUSATION YIELDS

A THRESHOLD = 264 .

ONE MAY USE THE RMTC EQUATIONS AND THEIR THRESHOLD

TO CALCULATE THE RISK FOR FALSE ACCUSATIONS.

FOR FLUNIXIN WITH THE 20NG/ML THRESHOLD, THIS RISK IS

104/10000 OR 1.04%. IN OTHER WORDS ONE IN EVERY

ONE HUNDRED ACCUSATIONS WILL LIKELY BE FALSE.

THE RISK WHEN USING THE CRAMÉR METHODS FOR

FLUNIXIN WITH A THRESHOLD OF 264 IS 1/10000 OR 0.01%.

IN OTHER WORDS ONE IN EVERY TEN THOUSAND

ACCUSTIONS WILL LIKELY BE FALSE.

<u>RISK</u>	<u>THRESHOLD</u>	
1/10000	264 ng/m	
1/5000	164	
1/1000	85	
1/500	44	
1/100	35	

THE REAL QUESTION IN CHOOSING A THRESHOLD

IS THE FOLLOWING.

WHAT PERCENTAGE OF ACCUSATIONS

SHOULD BE ALLOWED TO BE FALSE?

1% OR 0.01% OR SOME THING ELSE?

THE USE OF CRAMÉR ALLOWS ONE

TO CHOOSE THE LIKELY PERCENTAGE

OF FALSE ACCUSATIONS AT THE

OUTSET SO THAT EVERYONE

INVOLVED CAN UNDERSTAND THE

IMPLICATIONS OF A RULE.