Skeletal Adaptation to Training Responses to Injury

Susan M. Stover DVM, PhD, Dipl ACVS

NHBPA Winter Convention

2014

Musculoskeletal System

Courtesy of Mitch Taylor

Skeletal Organization

Bone Architecture

- Related to mechanical function
 - Supports the weight of animal
 - Energetically expensive because mineral is heavy

Effect of Architecture on Strength

Bone structures adapt to ...

minimize mass (weight)

while ...

maximizing stiffness and strength

for common loading conditions

Three different 2-yr-old Thoroughbred Horses

Untrained Training, unraced Raced

Exercise

- Needed to *maintain* bone mass
- However...
 - Less exercise is needed to maintain mass than is needed to gain mass
 - Fewer load cycles on a regular basis

Inactivity

- If you don't use it – you lose it

STRENGTH is <u>exponentially</u> related to skeletal MASS

Maintaining Fitness

 Relatively little exercise is required to maintain bone mass

The work must be relevant to the work the horse is expected to do

Bone Fatigue

- Degradation in stiffness
- Degradation in residual strength
- Failure with cyclic loading

Repetitive Loading

Musculoskeletal System

Courtesy of Mitch Taylor

Injury

 Stimulates adaptation or repair depending on the severity of injury and opportunity for repair

Adaptation

Increase the Daily Burden of Injury

- More severe damage
- Necessitates the removal of devitalized tissue

Bone Physiology

- Bone is actively being repaired throughout life

However, the time for repair is rate-limited

osteoclasts

microcracks

Bone Remodeling Unit (BMU)

osteoblasts

Injury stimulates repair & induces transient bone loss

Repair takes TIME

Bone Physiology

- Bone is actively being repaired throughout life

A transient period of enhanced weakness

follows injury during repair

Humeral Stress Fracture

Training Intensity

2001 <u>Martin, R.B.</u>: The Role of Bone Remodeling in Preventing or Promoting Stress Fractures. In <u>Musculoskeletal Fatigue and Stress Fractures</u>, D.B. Burr and C. Milgrom, eds., CRC Press, Boca Raton, FL

Given TIME - damaged bone can heal

Early clinical signs

1 month later

3 months later

Courtesy of Dr. Rick Arthur

Damage exceeds Repair

2001 <u>Martin, R.B.</u>: The Role of Bone Remodeling in Preventing or Promoting Stress Fractures. In <u>Musculoskeletal Fatigue and Stress Fractures</u>, D.B. Burr and C. Milgrom, eds., CRC Press, Boca Raton, FL

Continued loading of damaged, WEAKENED bone

Catastrophic Injury

1/31/2014

Repetitive Loading

- ↓ stiffness
- \downarrow strength
- then failure

Risk Factors

Damage accumulation affects risk of failure

- Number of load cycles
 - horse strides (distance)
 - over time (rate of distance accumulation)
- Magnitude of load per cycle
 - horse speed
 - hoof conformation
 - horseshoes
 - race surface

Training Intensity

Fetlock Injuries

Load Magnitude

Hoof Lever

Hoof Lever

Long toe / underrun heel

• Increases risk for fetlock injuries

Kane, et al. AJVR 1996;57:1147-1152 Balch, et al. AAEP 2002;47:334-338

Horseshoes

Traction Devices and Risk for Fetlock Breakdown

	OR*	95% CI
low toe grab ^a	6.5	1.2-34.1
regular toe grab ^a	15.6	2.8-87.1
rim ^b	0.3	0.1-0.9

^a compared to no toe grab

^b compared to no rim

Kane, et al. AJVR 1996;57:1147-1152

Risk Factors

ROG

Load Magnitude

Limb loading

Load transferred to hoof varies with surface

Fatality Rates at California Racetracks

Rick M. Arthur, DVM AAEP PROCEEDINGS / Vol. 56 / 2010

2004-2009: HP, DM, GGF, SA converted from dirt to synthetic surfaces

Race Surface

- Bone alters it's size and shape in very specific ways to training and to inactivity
- Bone adapts specifically to the job it performs
- Bone is actively being repaired throughout life
- A transient period of enhanced weakness may follow injury during repair

Race between 2 rates:

- Rate of damage accumulation
- Rate of damage repair

- Exercise intensity and schedule
- Hoof conformation and shoeing
- Surface materials and management

Many OPPORTUNITIES for injury prevention

Training intensity Horseshoe appliances Hoof conformation Race surfaces

njuries are m

CHRB RACING SAFETY PROGRAM

Horses, Horsemen and Horsewomen

