

Study design and EIPH Analysis of BC-2013-EIPH Study

Hugh G.G. Townsend Vaccine and Infectious Disease Organization and Department of Large Animal Clinical Sciences University of Saskatchewan, Saskatoon, SK, hugh.townsend@usask.ca

Background

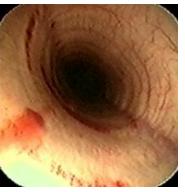
- DVM, MSc
- Professor Large Animal Internal Medicine
- Epidemiologist
- Research Scientist
 - Critical analysis scientific literature
 - Study design
 - Data analysis, Data presentation, Statistics

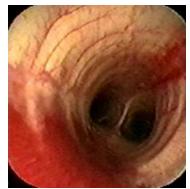
Barlett's Childers b. 1716

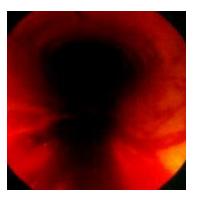
BREEDERS' CUP 2013 EIPH DATA

Dr. Nathan Slovis – Study Coordinator Dr. Mike Spirito Dr. Barry David

Dr. Noah Cohen: Data Analyst




Breeders Cup EIPH Study


PURPOSE

Study the impact of prohibiting Furosemide on the occurrence and severity of blood in the trachea during/after racing

Study Design

- Study population 78 starters 2013 Breeders Cup
- 7/22 races over 2 days
- Non-BC horses were treated BC horses were not
- Examined 14/28 non-BC and 41/50 BC horses (55/78)

Race	Fillies/Colts	Breeders Cup	Furosemide	Started	Scoped	Dirt/ Turf	Furlongs
Golden Stakes Juvenile	Colts	No	Yes	9	14	Dirt	8
Golden Stakes Juvenile Fillies	Fillies	No	Yes	10		Dirt	8
Juvenile Turf Sprint	Both	No	No	9	0	Turf	6.5
Juvenile Fillies	Fillies	Yes	No	10	41	Dirt	8.5
Juvenile	Colts	Yes	No	13		Dirt	8.5
Juvenile Turf	Colts	Yes	No	13		Turf	8
Juvenile Fillies Turf	Fillies	Yes	No	14		Turf	8

Non-Breeders Cup							
Treated	Scoped	Not Scoped	Total				
Yes	14	5	19				
No	0	9	9				
Total	14	14	28				

Breeders Cup						
Treated	Scoped Not Scoped		Total			
Yes	0	0	0			
No	41	9	50			
Total	41	9	50			

Results and Conclusions

Results

- Treated horses were more likely to bleed and bled more severely than non-treated horses
- Bleeding was not more severe in non-treated Breeders Cup horses as compare to treated non-Breeders Cup Horses

Conclusions

- Results must be interpreted with caution
 - Concerned about design of the study

Limitations Noted in the Report

- Best study design = randomized, blinded, controlled study
- None of the BC horses were treated
- All of the non-BC horses were treated
 - Makes it impossible to determine if differences in bleeding was due to the treatment or the method of selection
 - Impossible to correct the problem through data analysis
- Examiners knew the treatment status of the horses
- Small number of horses in the study

My Assignment

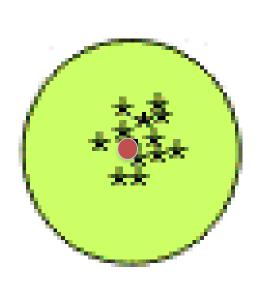
- Provide an assessment of the BC-EIPH study
 - Quality of design
 - Quality of data
 - Validity of conclusions

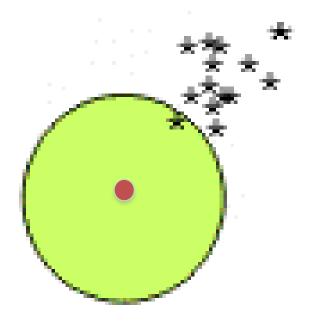
Starting points for a valid animal trial

- Clearly described and defined objectives
- Controlled
- Unbiased
 - Randomized
 - Masked/blinded
- Appropriate power
- Amenable to valid statistical analysis

The REFLECT Statement: Methods and Processes of Creating Reporting Guidelines for Randomized Controlled Trials for Livestock and Food Safety by Modifying the CONSORT Statement[†]

A. M. O'Connor, J. M. Sargeant, I. A. Gardner, J. S. Dickson, M. E. Torrence and Consensus Meeting Participants*: C. E. Dewey, I. R. Dohoo, R. B. Evans, J. T. Gray, M. Greiner, G. Keefe, S. L. Lefebvre, P. S. Morley, A. Ramirez, W. Sischo, D. R. Smith, K. Snedeker, J. Sofos, M. P. Ward and R. Wills


© 2010 Blackwell Verlag GmbH • Zoonoses Public Health. 57 (2010) 95–104


Bias is more common in studies not following guidelines

Bias Systematic deviation from truth

Generally unintentional

Preventing study bias

- Clear primary objective
- Randomized
 - Groups are same/similar except for the Rx
- Blinded
 - Investigators not aware of the Rx status of individual animals
- Controlled
 - Appropriate group to compare with the Rx group
- Adequate numbers of experimental units
 - Individuals or groups depending on the study design
- Adequate/appropriate challenge

Randomization

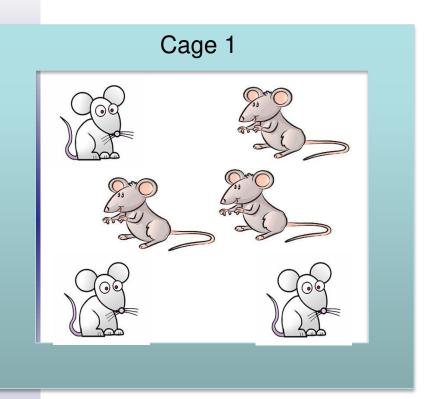
- Formal procedure
 - Computer program
 - Random numbers table
- No difference between groups except the treatment
- Treatment must be applied equally within
 - Day
 - Groups
 - Among horses within Race

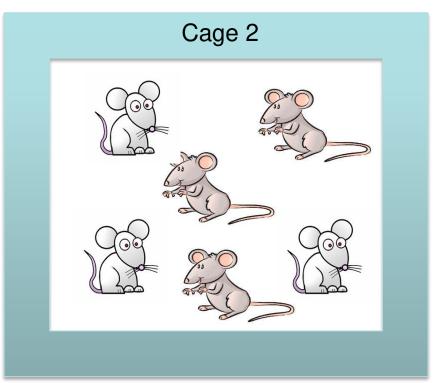
Randomization is not

- A volunteer
- First animal caught
- First half through the chute
- Every other animal
- Those who volunteer

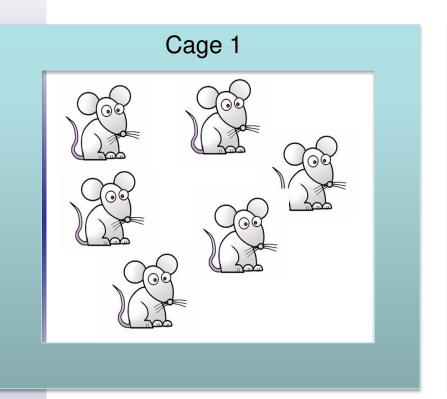
Blinding/Masking

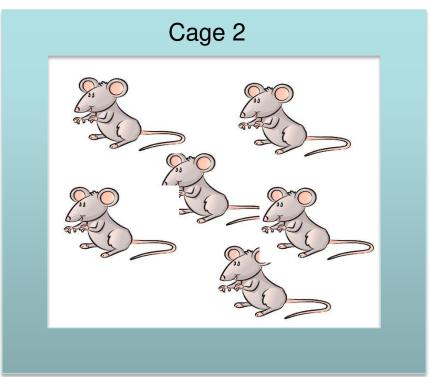
- Almost always possible
- Double blind
 - Evaluator and patient
- Blind/masking should occur at all levels
 - Treatment group through to statistical analysis
 - Everyone associated with the study
- If you do not do it, be prepared to declare and explain


Group Effects


- Occur in all experiments with >1 group
- Group environment, conditions, interaction among animals will vary among groups
- May significantly influence treatment response
- All treated animals in one group all controls in another
 - Single, trivial comparison (N=1)
 - Valid statistical analysis is not possible

This is a valid experiment




- Treatment effect and cage effect can be separated
- If no significant cage effect then N=6
 - Results of statistical analysis valid

This is not a valid experiment

- Treatment effect and cage effect cannot be separated
- N=1

Results of statistical analysis is not valid

BC - EIPH Study

- Randomized no
 - Risk of bleeding not uniform across the treatment groups
 - Recruitment volunteer
 - Missing data
- Blinded no
 - Evaluations may be biased
- Adequate numbers no (N=1)
 - FATAL DESIGN FLAW cannot separate/distinguish between GROUP and TREATMENT effects

How did it happen?

- Rules of the day (2012 & 2013)
 - All Breeders Cup horses raced without Furosemide
 - All comparison stakes horses were treated
- Risk of bleeding +/- similar between groups
- Can't separate treatment and group effect
- Don't know why the stakes horses bleed more than the BC horses
- N=1

Final Remarks

- Study purpose not met
 - Hypothesis could not be tested
 - Study question was not answered
- Study design is fatally flawed
 - Cannot distinguish between potential TREATMENT and any known or unknown GROUP EFFECTS
 - Because N=1
 - Data cannot be analyzed or interpreted
 - No meaningful conclusions to draw

An Analogy

